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Approximation Properties of Quadrature Methods 
for Volterra Integral Equations of the First Kind 

By P. P. B. Eggermont 

Abstract. We present a unifying analysis of quadrature methods for Volterra integral equa- 
tions of the first kind that are zero-stable and have an asymptotic repetition factor. We show 
that such methods are essentially collocation-projection methods with underlying subspaces 
that have nice approximation properties, and which are stable as projection methods. This is 
used to derive asymptotically optimal error estimates under minimal smoothness conditions. 
The class of quadrature methods covered includes the cyclic linear multistep and the reducible 
quadrature methods, but not (really) Runge-Kutta methods. 

1. Introduction. We study approximation properties of quadrature methods for the 
numerical solution of Volterra integral equations of the first kind 

(1.1) 6Iff(x) = f '(x, y, f(y)) dy = g(x), x E [0,1], 

i.e., methods of the form 

(1.2) n-I E w1/4I(x,, xi,n(Xi)) = g(xi), = s,s + 1,..n 
j=o 

for some fixed integer s > 0, where xi = i/n. The additionally needed fn(xl), 
i = 0, 1,. .. , s - 1 are furnished by some other starting quadrature method, say of 
the form 

t-l 
(1.3) n-1 wJ ( x(S), J(s), fn( YJ(S))) = g(X(s)), i = O,1,... t -1 

j=0 

with x(S) = Oi/n, for fixed Al > 0, and the numbers xj, j = 0,1,. .. I,s - 1 contained 
in the set {YJ(S): j = 0,1,... ,t - 1). Generally, t - s is nonnegative. We renumber 
the sequence xo, x(S),. . . , x(s) 1, x x5+1,. . ,xn as yo, YI* Y + Yn+d-l For a review of 
quadrature methods, among others, see Brunner [4]. 

The system (1.2-3) is denoted by 

(1.4) Unrnfn = Png, 
where 

(1.5) rnf= (f(Yo) f(Y) ...f(Yn+d-1))T 
and similarly for pn, 

(1.6) Png = (g(xo s)), g(Y1), g(Y2), - .g(Yn+d-1))T 
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For general (), Un is a nonlinear operator acting on Rn+d, and its invertibility needs 
to be investigated. 

In (1.4-5), we may consider rn as a mapping of C[0, 1] onto Rn?d, but fn, the 
solution of (1.4), assuming it exists, is not (yet) defined on all of [0, 1], only at the yj. 
This is characteristic for discretization methods, and is one of the underlying themes 
of the work of Vainikko [21], [22] (see in particular Taylor [20]), and Stummel [16], 
[17], [18], among others. The theme of this paper is that there are, more or less, 
natural ways to interpolate rnfn, at least for the simple case 4?(x, y, z) z, such that 
(1.4) is the system of equations for a collocation-projection method for (1.1). This is 
used to prove error estimates for fn which are optimal with respect to order of 
convergence and smoothness requirements on f and (D. 

The approach to the interpolation of rnfn is to imitate the analysis of collocation- 
projection methods for the basic linear version of (1.1), cf. [5], [6]. So let 4?(x, y, z) 
= z and consider 

(1.7) W'f(x)= ff(y)dy=g(x), xE [0,1], 

and let Wn be the matrix for (1.2-3). Apparently, we have Wnrn fn = pn*'f, so 

(1.8) rn(f -f ) = Wn (Pn#'- Wnrn)f. 
Now the mimicry starts: we may subtract from f in the right-hand side of (1.8) 
anything that is annihilated by pn*r- Wnrn. To formalize this, let 

(1.9) Sn = {4 E C[10,]: p1p = Wnrn )}, 
and then from (1.8) (all norms are uniform norms) 

(1.10) IIrn(fn -f)II < (IIWn 1pn#1I + 1) inf{lif- Qj j E4, en 
Now there are two questions. First, can the quantity IlWn-lpnVll be bounded 
uniformly in n? The answer is yes if the quadrature method is zero-stable (and 
consistent). Second, what are the approximation properties of Tn? Tn is certainly a 
large subspace of C[0, 1], since it has codimension n + d, but the question is whether 
it contains anything useful for approximation purposes (how small is the infimum in 
(1 .10)). We settle this question by exhibiting natural interpolators (prolongations) pn: 
Rn?d __* such that l f- pnrnff < cllf(P)lln-P, if f E CP[O, 1], and t Pn}n is a 
regular family of embeddings. In addition, it turns out that the system (1.4) in this 
case is equivalent to 

\P fn = Pi m, 

i.e., (1.4) is a collocation-projection method, and 5?n has nice approximation properties 
(see above). For arbitrary linear systems, i.e., 4?(x, y, z) = K(x, y)z, the system 
(1.4) may be considered as a fully discretized version of the collocation-projection 
method 

(1.12) ( 
nfn C 

P 
n , 

and hence shares the basic stability and convergence properties of (1.11). In the 
general nonlinear case, there is a similar identification. 
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In this paper, we work out the above approach, and apply it to some well-known 
quadrature methods, such as the cyclic linear multistep methods of Holyhead et al. 
[9] and Andrade and McKee [1], and the reducible quadrature methods of Wolken- 
felt [23], [24], which contain the methods of Gladwin [7], [8] and Taylor [19] as 
special cases. An added benefit of the above approach is that we obtain optimal 
error estimates with respect to smoothness requirements as opposed to the results in 
the above papers. 

We now state the main result of this paper. Assume that the method (1.4) for the 
case 4(x, y, z) z is 

(i) zero-stable, i.e., 

(1.13) supn-'II Wn yl< xo; 
n 

(ii) asymptotically r-cyclic and composite of order p, i.e., 

(1.14) IlArn(Wnrnf - pn*lf ) || < c||f (P)|n -P-1 

where 

(1.15) gnZ (~zi -Zi-r = r,. ..,n + d. 
Here r is the asymptotic repetition factor. It is easily seen that (1.14) implies that 

wij < oo, uniformly in i, j, n, and 
i-r 

(1.16) E IWiI - WIj < oo uniformly in i, n, 
j=O 

and that the quadrature method (1.4) has a truncation error of order n-P. The 
condition (1.16) is well-known, see, e.g., Taylor [20] for r = 1, as is, of course, (1.13). 

THEOREM 1.1. Assume that (1.13-14) holds. If ?D(x, y, z) = K(x, y)z, and aK/ax 
and f have continuous (partial) derivatives of order q, then for n large enough the 
solution fn of (1.14) exists and satisfies 

(1.17) IIrn(fn -f )II < cJJKJJq+ 1T11f lqn 
where q = 1, 2,.. . ,p. (See (2.3) for the meaning of the norms.) 

The usual smoothness requirements are aK/ax and f are CP1 to get a bound 
O(n-P), cf. [1], [7], [8], [9], [13], [19], [23], [24]. There is a similar theorem for the 
nonlinear case. 

The remainder of this paper consists in proving the above theorem. The assump- 
tion (1.14) is used to construct a piecewise polynomial subspace Yn of Tn such that 
(1.11) is equivalent to Wnrnfn = png, and the approximation properties of Yn are 
established (Section 3). The zero-stability (1.13) is used to prove that the projector 
onto Yn, implicitly defined by (1.11), is bounded uniformly in n, and that for the 
general linear case, (1.4) is the fully discretized version of (1.12). This interpretation 
is used to prove Theorem 1.1 (Section 4). In Section 5, the general nonlinear 
equation is treated. In Section 6, we show that the aforementioned quadrature 
methods of [1], [9], [23], [24] fit the mold, i.e., the assumptions (1.13-14) are satisfied. 
This then provides a unified theory of quadrature methods for first kind Volterra 
integral equations. 
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2. Notations and Preliminaries. All norms in this paper are supremum or maximum 
norms unless indicated otherwise, so if f e L?(2) with S2 c R1, 

(2.1) Ilf 11s = ess sup{ If(x)l: x e Q }. 

In this paper, 2 = [0,1] c R or 2 = T = {(x, y): 0 < y < x < 1 or 0 < y < e}, or 
i2 = T x R. For 2 = [0,1], the norm is denoted simply by liii. If b E RW, its norm is 
defined by 

(2.2) llbll = maxf {bil: i = 1, 2, ... n}. 

For q > 0, an integer, and S2 c Rn, Cq(i2) denotes the space of q-times boundedly 
and continuously differentiable functions on 2, and we define a norm on Cq(i2) by 

(2.3) l|f = IDafla, 
1a1 < q 

where D' - al/ax1 ... aam/axm in the usual multi-index notation, and lal = a, 
+ a2 + + am. Sof e Cq(i2) implies IlfI Iq,Q < cx. We also define 

(2.4) Cq'[0,1] = {fe Cq[0,1]:f(0) = O} 

with a norm 

(2.5) Ilf 11o,q = Ilf'llq-1. 

We have already defined 91 and * in the introduction. We let 

(2.6) "fj(x) = K(x, y)f(y) dy, x E [0,1], 

and we restrict 91 and 1" by requiring that D E , and K e Xq, where 

(2.7) Iq = { K E Cq+?l(T): K(x, x) =t 0 for all x E [0,1]}, 

(2.8) DK = { Ez e Cq+l(Tx R): inf{ (D(x, x, z)|: (x, z) E [0,1] x R} > 01. 

We have the following mapping properties of 91, 1"and i. 

LEMMA 2.1. (a) *'is an isometric isomorphism of Cq[O 1] onto C+''[O, 1]. 
(b) 1 is an isomorphism of Cq[O, 1] onto Cd+'[0, 11 provided K e 

(c) 91 is a homeomorphism of Cqo[, 1] onto C +'[0, 1] provided D C Xq - 

Proof. Parts (a) and (b) are essentially well known, see, e.g., Krasnosel'skii et al. 
[11, Chapter 1, Section 1.2]. Part (c) can be proved as follows. The Frechet derivative 
of 9 at f is given by 

[Jk'((f)h](x)= 'fxDz(x,y,f(y))h(y)dy, X E [0, 1], 

and it follows fromi part (b) that 91'(f ): Cqo[, I1] g G+ I[0, 1] is a homeomorphism, 
whose inverse is bounded, uniformly in f e Cq[O, 1], if PD C Xq. It then follows from 
Hadamard's theorem, Berger [3, (5.1.5)], applied to 91, that 91 is a homeomor- 
phism. R 

The above can be extended to prove that 4V' is Lipschitz continuous, i.e., 

llw-lf _ W-IgIl < clIf - gll, 

where c depends only on (D. It may also be phrased as: 91f - 91g = *vh implies that 

Illf- gll < cllhll. In Section 5, we prove it for the operators Un, assuming the 
zero-stability of the quadrature method. 
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Finally, some remarks on notation. The subintervals [y, -1, y, ] of [0,1] are denoted 
by vi, i = 1, 2,. . ., n + d. It is convenient to index components of vectors in R + d as 
x = (xO, x1,. . . ,xnIdl)T, and we will do so consistently. Finally, the symbol c 
denotes a universal constant, but each occurrence usually denotes a different 
constant. 

3. The Approximating Subspaces 5n. Throughout this section, we assume that the 
quadrature method (1.4) satisfies property (1.14). We prove the following theorem 
and lemma. 

THEOREM 3.1. There exist prolongations pn: R ?d ,* C[O, 1], such that 

(3.1) llxIlI < lpnxll < cllxll for alix E Rn?d, 

and n= pnx: x E Rn+d } is a subspace of _2n which satisfies 

(3.2) inf {If-f (q) 4L -en 

for allf E Cq[0 1], q = 0, 1,... ,p. 

LEMMA3.2.Fori = 0,1,...,n + d- 1, 

(3.3) inf {II f- 4IIa,: E 9?} Yn cn1 [lll. 

It should be remarked that instead of (3.3), we would rather have 

(3.4) inf{II0'#f - )V411: 4 E= n 11411 c|f|II} < cn-'Ilf 1, 

but no proof could be found (without assuming zero-stability). However, (3.3) is 
useful as is. 

The proof of Theorem 3.1 is constructive. To construct elements of Yn, let 
z E R ?d. We want to find a (piecewise polynomial) function Pn = Z such that 

(3.5) {n rn2Z = Pn.7/ 

A solution of (3.5) is given by '(x) =I(x), x e au, i=1,... ,n + d, where I' is 
the cubic Hermite interpolating polynomial satisfying 'I(xi1) = (Wnrnz),_J, 

l (x i j) = z1 -j forj = 0, 1. This choice of 4 does not give very good approximation 
properties though: we would like f - pnrnf to be small. The correct approach is 
through certain Birkhoff interpolation problems. In Subsection 3.1, we review the 
existence of solutions and their approximation properties. In Subsection 3.2, we 
show how this solves the problem (3.3) for the case r = 1. In Subsection 3.3, we 
describe the ad hoc modification necessary for the case r > 2. This then will 
complete the proof of Theorem 3.1 and Lemma 3.2. 

3.1. Birkhoff Interpolation Problems. Consider the following Birkhoff interpolation 
problems, given z E Rn?d, withp* = max( p - 2, 1), 

(a) for 1 < i < rp*, 

+'z (Yl+j) (W,Z),+jq j =0,1, 
(3.6) + I(Yl+j) Z1+Jq j 0, 1, - .p*, 
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where r is the asymptotic repetition factor, cf. (1.14-16), and 9 is2 iS the set of 
polynomials of degree < p* + 2; 

(b) for rp* + 1 < i < n + d, 

+,I (Y,-jr)=(WnZ)1-jr j = 0,1, 

(3.7) + Yi -jr Zi-Jr, j 0 1 P* 

t1E= p* +2 ; 

(c) for i = 0, 

(to(yo) ?0, o(YI) (Wnz)l, 

(3.8) ) Y ,, J * P 

+0 p- *+3- 

The problem (b) is the "main" problem. Parts (a) and (c) are just there to make 
things fit neatly. 

LEMMA 3.3. The interpolation problems (3.6-8) have unique solutions. 

Outline of Proof. In the terminology of Lorentz et al. [12, Chapter 1], the 
interpolation matrices E for (3.6-8) are given by 

=( [) 1 *-1; E;(3.7)=[) :f1$P* ; 
1 1 

E(3.8)=K1 1$P 

E O.6 Ei3.7 

For all r > 1, the matrices F can be extended with columns of zeros to Polya 
matrices without odd supported sequences, hence they are order regular, and the 'I' 
exist and are unique, see Lorentz et al. [12, Theorem 1.3], or the original reference 
Atkinson and Sharma [2]. [1 

A consequence of the lemma is that the functions 'I' depend linearly on z, so we 
may write them as 

1 (3i9) (.8 0IX = 1 Z )=n1EZ-rVnXY) 

-o I ~ ~ ~ y= 

+ E ( J'z)ijyrbj(n(x-y1)), 
j=O 
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for rp* + 1 < i < n + d, and for I < i < rp*, 

(3.10) 'I(x) = +I'(z; x) = n z 1+jBi(n(x -YJ)) 
j=O 

+ L (WJz),+1bj(n(x - y)), 
j=O 

and similarly for I0. Here the Bj, Bj, bj and bj are independent of n. 
We now turn to approximation properties. 

LEMMA 3.4. Iff e Cq[0, 1], with 0 < q < p, then 

(3 .11) 11*f f-*i ( rn f; * )11||+, 
< cn -qllf (q)ll ' 

(3.12) llf- ''1'(rnf; *)IIUI+, < cn -qllf (q)ll 
forj= +, _1. 

Proof. We only prove the lemma for j = 0 and i > rp * + 1, since the other cases 
are similar. Let 

P* 

(3.13) i (f ; x) = n-l (rnf)z_irBj(n(x- y)) 
j=O 

1 

+ E (Pn?f )i-jrbj(n (X -y)). 
j=O 

Since 4P1(f; *) = fiff E gp + , we obtain that 

(3.14) II(if; )- f 11|f| < cn- - 

Consequently, 

11'i(rnf; *) - V( < cn-q-lllf(q)II + R, 

where 

R = p {(pnf)i-jr-( JWnrnf )ijr} b(n (-y)) 

It follows from (1.14) and the independence of n of the bJ, that R Cllf(q)lln-q, 
whence (3.11) follows. Similar to (3.14), we get 

(3.15) I|?(D'(; f- II,, < cn -qllf (q||I 

and so 

'I+1(rJ1f; f) f(F < cn-q"|f (ql" + R', 

where 

R= n f{ (Pn1f )ijr- (Wnrnf ) i-jr}b(( n yi)) 
J=WO 

We may rewrite this as 
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since V< - 'Ii' is not affected if we subtract a constant vector (all of whose 
components are equal) from p)Jf- W1rnf. Now assumption (1.14) gives us that 
R' < cn -qjf(4)11, and (3.12) follows. U 

We need two results which are related to (3.11), but which are not quite implied 
by it. 

LEMMA 3.5. For q = 0,1,...,p andf e Cq[O, 1], 

lTi(rnf; .) - +1(rnf; *)I|a+j < cn-q-lJJf(q)|J, 

withj = 0, + 1. 

Proof. Let Ti denote Ti(rnf; .). Apparently, 

1I' - '1?I+||,+ < LI'1 - i (Ti+1 - I+?)f1+, + IIli - iIIa+, 
where 4i = %i(f; -) is defined by (3.13). Now 

lji 
_ 
i-i+lgltal+J 11j) _ 

)Xif IIXa,+, + 110,f _ i+lla,+ , Cllf (q) lln 

by (3.14). As for the first term, we get for i > rp*, 
1 

Ei(x) = 'ti'(x) - Di4(x) = E (Wnrnf - Pnf )i-irbj(n(x- yi)), 
j=O 

so by the mean value theorem 
1 

ei(X) - 93+1(x) = ( (Wnrn- Pnf f )--jrf(Y, -yi+1)bj'( (q), 
j=O 

and similar to (3.16), 

1li - ej+ ?1Ia+J < AYn(Wnrnf- 
- 

pn"'f)il 11b6(n(. -Yi))llI+ 

and the assumption (1.14) gives the desired estimate. 
For i < rp*, the estimate follows likewise. U 

The estimate (3.11) can be improved for q = 0 in the following sense. 

LEMMA 3.6. For each f E C[0, 1], there exists a z e Rn?d such that 

llji+i(z; .) - f'rjI < cIIfIInl, 

with j = 0, - 1. 

Proof. Let io be such that for all i > io and for all n, 
i-p*-l 1 

(3.17) n-1 Y, WiJ > - yi . 
J=O 

For 0 < x < io/n we have I f(x)I < cIIfIIio/n, hence I If II + <I II fIInI, and 
by taking z = 0, we prove the lemma. For i > io choose z E Rn?d as follows: 

we, j > i -rp* 
Zi. 0D 0 j < P* -l 

where 
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Then rizil =11 < 211f 11, and from (3.9) (w.l.o.g. io > rp*), we obtain 

'i'(z; x) - -f (x) = 'f (yi){bo(n(x - yi)) + b1(n(x - yj)) - 'f (x). 

Since bo(x) + bl(x) = 1 for all x, the lemma follows for j = 0. For j = -1, the 
lemma follows likewise. O 

3.2. The Case r = 1. We now prove Theorem 3.1 and Lemma 3.2 for the case 
r = 1. The prolongations pn are defined by 

(3.18) Pz(x) = f4'1Q(Z; x), x E 1, 2i * , rp*, 

where z E Rn?d, and set 

(3.19) 5n9= {pnz:ZERn?d}. 

It is easily seen that pnP'pnpz = Wn z, hence (3.5) holds, and 5n is indeed a subspace 
of En. The regularity property (3.1) follows from (3.12) by taking f to be the 
piecewise linear interpolant on z, so rn f = z, and j = 0, q = 0. The approximation 
property (3.2) follows also from (3.12), withj = 0, by piecing together the ai. Finally, 
Lemma 3.2 follows from Lemma 3.6 with] = 0. 

3.3. The Case r > 2. It is clear that the definitions (3.18-19) will not work for 
r > 2, since the function 'I(x) = 'I'(x), x E vi, i = rp* + 1,...,n + d, is not even 
continuous. However, we may remedy this by taking some average of 'i and 'i- 1 on 
ai, and differentiate this, to obtain 

(3 .20) pnz (x ) = (#dx{ ai (axx)4(z; x) + bj(x)4'_l(z; x)}, x } a1, i> 2 

* ('Z; X), x E a,. 

Since we want (pnz)(yi) = zi and (#'pnz)(yi) = (Wnz)i, it suffices to take 

(3.21) ai(yi) = 1, a'(yi) = 0, ai(yi_1)= 0, a'(yi-1) = 0 

b1(y1) = 0, b'(yj) = 0, bi(yi-1) = 1, b'(yi-1) = 0. 

The reader will recognize that we may take ai and b1 to be Hermite interpolating 
polynomials, viz. (i > 2) 

(3.22) ai(x) = [n(x - yi1)]2(l + 2n(yi -x)), 

bi(x) = [n(yi - x)] 2(1 + 2n(x -yi- ). 

Now it is readily verified that pn z indeed satisfies (3.5), and so Yn = im pn is again a 
subspace of 2n. 

With this choice of Pn and tYn we now prove Theorem 3.1. First, we prove (3.2). 
Let 0 < q < p, andf e Cq[0, 1]. From (3.20), we get 

If - flrfl KT ja'(*I - *'I'ji.g, + Ila +('bi(*' - f)jjg jb(I'' llf Pnrnf Ill ai i t-i1aif+lait -i ai + 1it_l+)li 

with *I = *i(rnf; *) as before. Here we used that a, + bi 1, a' = -b. Now 
Lemmas 3.5 and 3.4 give the estimate 

(3.23) Ill - II < cjlf(q)j qn, 

so (3.2) follows. 
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The regularity property (3.1) is (again) a consequence of (3.23) by taking f to be 
the piecewise linear interpolant on z, and q = 0 to yield IpIPzII < lizl + clizil; the 
inequality lIzII < I Ip zII follows from z = rp &z. 

The proof of Lemma 3.2 follows from (3.20) and the inequality 

IIa*I' + bi*s- I - 'fjla, u< 1lai(+s- )la+ bi( 1-I- f 

and then applying Lemma 3.6. 
This completes the construction of the spaces 5?, and shows the equivalence of 

(1.4) and (1.11) if 4P(x, y, z) = z. 

4. The Collocation-Projection Method and the Quadrature Method. In the previous 
section, we showed that the system (1.4) for the case 40(x, y, z) z is the colloca- 
tion-projection method (1.11). In this section, we write it first as a projection method, 
and exhibit the projectors involved. We show that the projectors are uniformly 
bounded in their natural setting if the quadrature method is zero-stable. Finally, we 
interpret the system (1.4) in case 4P(x, y, z) K(x, y)z, with K E X0, as a fully 
discretized version of the collocation-projection method and prove its optimal 
convergence properties. 

Throughout this section, we assume that the quadrature method is zero-stable 
(1.15), in addition to (1.14). 

Consider the system (1.4) if 4?(x, y, z) z, 
(4.1) Wnrn fn = Png 

By the construction of pn, this is equivalent to 

PnPn rn fn =Pn 9g, 
and since pnrnfn E 5'n, this is equivalent to (1.11), i.e. (4.1) is the system of linear 
equations for the collocation-projection method (1.11). Since Wn is nonsingular, the 
solution rnn E Rn+d of (3.1) is given by Wn-png, hence fn = pnWn-png. Conse- 
quently, we may write (1.11) equivalently as 

(4.2) Y#fn = Zn 9 

and its solutionfn as 

(4.3) fn = n 
with 

= r-y'pn: CJ[o, 1] --- )'V(s') C Cl, (4.4) gn = pPnWnPn C[0,1] -*(M C c[o,1] 
2n =PnWn- Pn #' CIO, '] 5->n C CIO' 1]. 

It is easily verified that gn = 2n2 and n = 2 hence ?An and n are projectors. The 
formulation (4.2) is the standard formulation of a projection method; cf. Phillips 
[15]. We are interested in the boundedness, uniformly in n, of the projectors gn and 
2n in their natural setting. 

LEMMA 4.1. SUPn IV,n II < X0 

Proof. Letf E C[0, 1]. From (3.9), we obtain for i > rp* that 
P* 1 

'P1(X) = PI'f(wr-pn*Yf; x) = n-l ( (W1p j B. E (Pn1f )i-irbi 
j=O j=O 
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where we dropped the arguments of B. and bj. Hence 

(4.5) II+illa,+J < cI' dff II, 
j = 0, ? 1, where we used the zero-stability. From (4.5), (3.18), (3.20), we then obtain 
that (z = Wn- lpnYf ) 

(4.6) ||<pn f 11 < cJj)fJj. 
This says that Zn: C[O, 1] -- C[0, 1] is bounded, uniformly in n. Now, for every 
1 i < n + d, 

!IlSnfIIa, = || -f-'X,ry 92ntl |)X(nf 1 II'n 10, dx " K dx' 
for every function Ki Ee C[0, 1] which is constant on a,. So 

(4.7) Il-nf 11a, < cnInI|Aff - Kl|ia, 

< cnA9,(1%f - KJ11,, + cnll(Yn - I)Kjua. 

The first term on the right may be estimated using (4.6) as 

cnllrf- Killa,, 

and by setting 

(4.8) Kc1(x) { ("f(y 1), 0 s< x 
< Y, 

this may be estimated as cn * n 1I(<f)'III < cIIf I . The second term on the right of 
(4.7) can be written as 

cnII(.n - I)(Ki < M)IIJ $ l fclKI v 
for every 4 E Sn. By Lemma 3.2, this may be estimated as cn * n-'IIKIl I cI)ft I < 

ctlf 1. Consequently, (4.7) yields I2nfIIa, < clif 1 for each i, n. Piecing together the a, 
then proves the lemma. O 

Remark. Following Lemma 3.2, we said we would rather have the stronger 
inequality (3.4). If (3.4) holds, then the proof of Lemma 4.1 is quite easy: for 
f E C[O, 1], let 4 E 5'n such that 11411 < cif 11, IIff - 4'fIl < cn-lilf II. Then 

(4.9) Wn pnwf = Wn- lpn'p + o (fl Wnl ll n l- lf ll). 

By the zero-stability, the big 0 term is O(IIf I1), and I IWn-pn 4I I = I Irn4I I < clIf I1. So 

I I Wn-1pn)f I I c If ll, etc. Now that we have proven Lemma 4.1 via a different route, 
(3.4) follows, with 4 = 2nf, but to no apparent purpose. However, it still leaves the 
conjecture that (3.4) hold without the zero-stability assumption. 

Lemma 3.2 says that the projection method (1.11), (4.2) is stable. It is actually 
possible to prove that the collocation-projection method 

(4.10) Pn 'Ifn =Pn 9 

is stable as a projection method, i.e. there is a corresponding Lemma 3.2; cf. 
Eggermont [5], [6]. However, we are more interested in the system (1.4) for 
P(x, y, z) K(x, y)z, with K E AP. Then the system (1.4) may be written as 

(4.11) [ )pnrnK(y, )fnt()]I(Y) dy = g(yi), i = 1,2,... ,n + d - 1, 



466 P. P. B. EGGERMONT 

and a similar equation for i = 0 with yo replaced by xWS). This may be denoted as 

(4.12) Vn r,1fn P" g. 

LEMMA 4.2. If K E4* Xo, then there exists an N > 0 such that 

sup II VnoWnoI < x. 
n>N 

Proof. Follows the proof of [5, Lemma 5.1] verbatim, but with different interpre- 
tations. O 

COROLLARY 4.3. Under the conditions of Lemma 4.2, 

sup n- 1j1in-1j < x. 
n>N 

THEOREM 4.4. If K E X0, then for n large enough, the solution rn fn of (4.12) exists 

and satisfies 

llrn(fn -f ) 11 < c sup P inf |DiK(x, .)f( - 
x i=O 

where D' = d1/dx1, and the infima are taken over 4j E 5in. 

Proof. We follow the proof of [5, Theorem 5.2] very closely. From (4.12), 

(4.13) Vnrn ( fn -f) = pn h, 

with 

(4.14) h(x) = f {K(x, y)f(y) - [ pnrnK(x, )f()](y)} dy. 

Observe that h E CJ[0, 1], so h = Yr(h'). Then from (4.13), 

rn-( fnf ) =Vn- WnWn- pnV(h 

hence 

llrn (f - f) || < c| 7Vn Wn7 IIirnll 112nIl llh'Il < cllh'Il, 

by Lemmas 4.1 and 4.2. For fixed x, h'(x) may be written as 

(4.15) h'(x) = K(x, x)f(x)-#o(x)-[pnrn(K(x, .)f(.) - o())](x) 

+f {KKx(x, y)f (Y)- My) 

-[Pnrn(Kx(X, .)f () - 41(.))](y)} dy, 

for every 40, ' j E 5n (sincepnrnij = 4i). Consequently, 

(4.16) Ih'II < c sup (inf|K(x, )f()- ?oll+ infllKx(x, )f(-)- 111} 

and the theorem follows. E 

COROLLARY 4.4. If K E X%, f E Cq[O, 1], then for n large enough 

|rn ( fn -f ) || < cEjKjjq+ 1,T||f llqn -q 

forq= 1,2,...,p. 

This completes the convergence analysis of the quadrature methods for linear 
integral equations. 
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5. The Nonlinear Case. The theory of Section 4 extends to nonlinear equations 
(1.1) with 1 E- X0. Again, we assume throughout that conditions (1.14-15) are 
satisfied. 

LEMMA 5.1. If ' E X0, then there exists an N such that 

sup sup{ |(UnL(ej)) 'Wn: e, Ee Rn+d} < X . 

Here Un(e) is the Frechet derivative of Un at e. 

Proof. The proof follows by inspection of the proof of [5, Lemma 5.1], cf. Lemma 
4.2. (The norm II(Un(en))-'Wnjj depends only on the quantities infIIz(x, x, z)l and 
11'k-JIT-) F- 

COROLLARY 5.2. If 1 E X0, then for n large enough, the system (1.4) has a unique 
solution. 

LEMMA 5.3. If (I E, X0, there exists a constant c such that for all n large enough and 
for allf, g and h E C[O, 1], the statement 

UnLrn f- Unrng= pnYfh 

implies llrnf - rngIl < clihil. 

Proof. The proof is a slight variation of the proof of Hadamard's theorem, Berger 
[3, (5.1.5)]. Let en : [0, 1] -> Rn + d satisfy 
(5.1) UL(en (t)) = tUnrnf +(1 - t)Unrn g 

Then after differentiation with respect to t, premultiplication with (L,(en(t)))1 

which is possible by Lemma 5.1, and integration over t E [0,1] we obtain 

(5.2) en(1) - en (0) = 
I 

(Un(en (t))) 'pnfh dt. 

Apparently, en (1) = rn f, and en (0) rn g. From (5.2), we then obtain 

11rnf f-rn gl < sup ||(Un ( en (t))) Wn| II Wn- pn*'Il llhll 

By Lemmas 5.1 and 4.1, we then get 

llrnf f-rn gl < c||h 11 

and we are done. C1 

THEOREM 5.4. If 1 E X0, then for n large enough (depending on 4P) the solution of 
(1.4) exists and satisfies 

1 

| -rn(fn-f) II-< c sup E infI|D'4 (x, , f(.))- 
x i=0 

where D' = d'/dx', f is the solution of (1.1) with g E CO[0, 1], and where the infima are 
over 4n E9M. 

Proof. We have 

(5.3) Unrnfn - Unrnf = pnhn, 

where 

hn(x)= f {((X, Y,f(Y)) -[PnrnD(X, ,f( ))](y)} dy. 
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Note that h E CO [O, 1], so hn = #"(h ), whence (5.3) yields 

Un rn fn- Un rn f = pn h'n 

Lemma 5.3 then gives for n large enough, 

|rn ( fn -f ) 11 < cslhl n 

The theorem follows after a derivation similar to (4.15-16). El 

COROLLARY 5.5. If (! E Xq and g E Cd+l[O, 1] then 

||rz(-fn-f )| < C||'D11q+ ,TXR11f llqn-q 

forq= 12,...p. 

This completes the analysis of the nonlinear equation. 

6. Some Well-Known Methods Fit the Mold. In this section, we show that the 
following classes of methods satisfy the zero-stability and compositeness conditions 
(1.13-14): 

1. Cyclic linear multistep methods: Holyhead et al. [9], Andrade and McKee [1]. 
2. Reducible quadrature methods: Wolkenfelt [23], [24], with special cases by 

Taylor [19], and Gladwin [7], [8]. 
3. Runge-Kutta methods (but we cannot prove convergence of order higher than 

two): Keech [10]. 
6.1. Cyclic Linear Multistep Methods. Cyclic linear multistep methods are based on 

interpolatory quadrature rules used in a cyclic fashion. Consequently, the weights w1j 
in (1.2) satisfy 

(6.1) Wi+r,j = Wi j j = 0,1,...,i, 

i.e., r is the exact repetition factor, so (1.16) is certainly satisfied, as is (1.14) by the 
construction of the quadrature rules. The methods contain a number of free 
parameters which need to be chosen such that the zero-stability condition (1.14) 
holds. This usually involves the solution of a nonlinear system of equations; 
Holyhead et al. [9], Andrade and McKee [1]. 

6.2. Reducible Quadrature Methods. These methods were studied extensively by 
Wolkenfelt [23], [24]. They include those of Taylor [19], and Gladwin [7], [8]. In these 
methods, the weights wij are constructed via linear multistep methods, as follows. 
For the basic linear case ?(x, y, z) z, the equation (1.2) is written as 

s s 

(6.2) E aj(Wnrnff)i-j = h , bjf(xi-J) i = s, s + 1,.. .,n + d - 1, 
j=O j=O 

where the aj and bj form a linear multistep method for the initial value problem for 
an ordinary differential equation which satisfies the following two conditions. 

(i) Stability requirements: 

S 

(6.3) p(() = L ayj~/(1 - (), 
j=O 
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and 
S 

(6.4) ()= E b>j,j 
j=O 

are bounded away from zero on D = E C: 1 < 1}; 
(ii) The multistep method is convergent of orderp, i.e., 

s k 

(6.5) E ajYf(xj_j) = h E bjf(xi_1) + Ti(f), i >? s, 
j=O j=O 

with 

(6.6) | Ti (f ) I < cIf (P)IIn-P- 1. 

One verifies that the first stability requirement guarantees that elements of nWn 
are bounded, uniformly in n, and the second one guarantees the zero-stability of Wn, 
(1.13). 

We also claim that (i) and (ii) combined yield the condition (1.14) with r = 1. This 
may be seen as follows. From (6.2) and (6.5), 

k 

(6.7) E ajEi-j = Ti(f), i> s, 
j=O 

where 

(6.8) EF = f (xI)-(Wnrnf )i 
We already know (or assume) that 

(6.9) IEil < cIIf(P)In-P-1, i = 0,1,... ,s-1, 

so, defining Ti (f), i = 0,1,... ,s - 1, by (6.7-9), we have that (6.6) and (6.7) hold for 
all i > 0. Using generating seres, we obtain from (6.7) that for t E D, 

00 00 

(6.10) (1-) - Ei = E T(f jlp 
j=O j=O 

Now the stability requirement for p(~) tells us that 
o ~~~~~~~~~~~~~00 

(6.11) {p(()}1 - E c,,', (e D, 
j=0 

with cj= O(Ri), j oo, for some 0 <R < 1. Hence 

(6.12) =.E- T (f)ci_j5 
j=O 

and so 

(6.13) I /XEI| 6 c maxI T(f ) cIf(P)IIn P1 

where A00 is the infinite version of An, (1.15). Now (6.13) is exactly (1.14) for r = 1, 
and we have proved our claim. (Observe that, in the process, we have proved that 

supn w1(Ai) || < ?? 
n 

cf. Subsection 7.1.) 
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Since (1.13-14) hold the reducible quadrature methods are covered by the theory 
of this paper. 

A similar analysis leading to (1.13-14) can be done for the modified multilag 
methods, Wolkenfelt [24], applied to Volterra integral equations of the first kind. 
Here it requires a bit of effort to write the method as a quadrature method. We omit 
the details. 

6.3. Runge-Kutta methods fit the mold, too, though not really. The methods we 
consider are those surveyed by Brunner [4, (3.5)]. For a specific, third order example, 
see Keech [10]. It is clear that these methods are zero-stable since they provide local 
differentiation formulas when applied to the equation YKf = g, but condition (1.14) 
is not satisfied with the "right" value of p, e.g., for Keech's method [10], (1.14) holds 
only for p = 2 and not for p = 3, hence, our method only provides order 2 
convergence. 

7. Alternative Approaches. Here, we give an outline of two other approaches to 
optimal error estimates. 

7.1. Suppose that in addition to zero-stability, we have 

(7.1) sup n ̀ II Wn-'(Y )-'II < cc 
n 

We then obtain for the linear equation I"f = g from (1.8) that 

11 rn (ftn - f ) || -< || Wn- (gn ) -'I 11 Yn ( Pn*' Wn rn) )f| 

and now (7.1) combined with (1.14) yields the optimal estimate. To extend this to 
the general linear equation FYf = g requires most likely that Lemma 4.2 hold, but 
this appears to be hard to establish without further assumptions on the structure of 
Wn (cf. Subsection 7.2). Also (1.14) needs to be established for F rather than for j'. 
The condition (7.1) appears to be equivalent to zero-stability for quadrature methods 
for which Wn is essentially block-circulant, see below, but without this assumption it 
appears to be hard to prove. 

7.2. All methods discussed in Section 6 share one property which we have not used, 
viz. the matrices Wn are essentially block-circulant, i.e., Wn may be partitioned as 

-AO 
A1 Ao 0 

(7.2) Wn= A1 A 0 
A2 A1 Ao 

Am Am- l A2 A1 Ao 

with A1 E RrXr, and n = mr (say). Also, the A1 and Ai are independent of n. 
Consequently, n Wn is a finite section of an infinite matrix which is independent on 
n, and power series methods may be used. This way Lemma 4.2 can be proved 
without the use of the uniformly bounded projectors, and optimal error estimates 
appear to be within reach. It appears that the most successful alternate approach 
would be a combination of 7.1 and 7.2. 

8. Conclusion. We have presented an approach to the analysis of quadrature 
methods with the following three features: (i) It closes the gap between collocation- 
projection methods and quadrature methods; (ii) It provides optimal error estimates; 
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and (iii) There are only minimal assumptions on the particular (algebraic) structure 
of the quadrature methods. 

The analysis does not cover Runge-Kutta methods, and it remains an open 
question whether they can be treated within our framework. One approach might be 
to proceed in a block-by-block fashion in the interpolation problems of Section 3. 
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